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We scrutinize the effects of “blind” adversarial perturbations against machine 
learning (ML)-based network intrusion detection systems (NIDS) affected by 
concept drift. There may be cases in which a real attacker – unable to access 
and hence unaware that the ML-NIDS is weakened by concept drift – attempts 
to evade the ML-NIDS with data perturbations. It is currently unknown if the 
cumulative effect of such adversarial perturbations and concept drift leads to a 
greater or lower impact on ML-NIDS. In this “open problem” paper, we seek to 
investigate this unusual, but realistic, setting—we are not interested in perfect 
knowledge attackers.
We begin by retrieving a publicly available dataset of documented network 
traces captured in a real, large (>300 hosts) organization. Overall, these traces 
include several years of raw traffic packets—both benign and malicious. Then, 
we adversarially manipulate malicious packets with problem-space 
perturbations, representing a physically realizable attack. Finally, we carry out 
the first exploratory analysis focused on comparing the effects of our 
“adversarial examples” with their respective unperturbed malicious variants in
concept-drift scenarios. Through two case studies (a “short-term” one of 8 
days; and a “long-term” one of 4 years) encompassing 48 detector variants, we 
find that, although our perturbations induce a lower detection rate in concept-
drift scenarios, some perturbations yield adverse effects for the attacker in 
intriguing use cases. Overall our study shows that the topics  covered are still 
an open problem which require a re-assessment from future research.

Abstract

Challenge: Finding the right Data

Crafting “blind” and “realizable” adversarial perturbations

Realistic Perturbations and Case Studies Major Findings and Recommendations

Contributions

What do we do (and why do we do it)?

All our resources (experimental source code, links to 
data source and explanation of data selection choices, 
configuration files, complete results, statistical tests, 
packet-manipulator) are publicly available at: 
https://github.com/hihey54/aisec24/ 

We openly release everything!

Threat Model

Overview of our analysis

How to carry out meaningful concept-drift assessments?

Data “pitfalls”: what can existing datasets for ML-NIDS allow?

A “snippet” of the MCFP dataset (which we will use for our analysis)

We surveyed the landscape of existing publicly available datasets for ML-NIDS, and we found that most do 
not allow a “meaningful” concept drift assessment. Some examples: 
• NSL-KDD is flawed ☺
• CICIDS17 is captured over a timespan of 5 days (!), and the data was created via simulations
• UNSW-NB15 is collected over 15 hours (!)
• Kitsune also has barely 1 day of data.
• UGR’16 is captured over 100 days… but the labeling is not consistent and is not provided with PCAP
Intriguingly, most prior research on concept drift was evaluated on the abovementioned datasets!

We found that the best publicly-available dataset that meets all our requirements is the “Malware Capture Facility 
Project” (https://www.stratosphereips.org/datasets-malware), which is an extension of the popular CTU13 dataset. 

Motivation

The attacker is outside the organization’s network, cannot access the NIDS (e.g., to query it), and only knows that an ML 
model analyzes network traffic. The attacker knows that the ML-NIDS is trained on datapoints “similar” to those used in 
their malicious activities: hence, the attacker is aware that there is a risk of being detected if nothing is done. However, 

the attacker does not know if the ML-NIDS is affected (or not) by concept drift (and neither do the defenders!) 

A real-attacker’s dilemma. It is unknown whether it is beneficial to introduce blind 
adversarial perturbations in an attempt to bypass an ML-NIDS affected by concept 
drift. The attacker must make a choice—potentially a detrimental one!

Our Institutions

We shed light on a problem that has never been investigated before in the ML-NIDS context: 
the combination of realistic (blind, realizable) adversarial perturbations with concept drift. We:
• pinpoint an open-source (and documented) dataset that can be used for concept-drift 

assessments in ML-NIDS (and which has been overlooked by most research);
• craft problem-space adversarial perturbations by manipulating raw network traffic 

simulating a simple and feasible attack;
• investigate the extent to which ML-NIDS are statistically significantly affected by realistic 

adversarial perturbations in concept drift contexts

Concept drift pertains to supervised ML, and defines the temporal “degradation” of an ML-
model’s performance due to naturally occurring phenomena. Hence, an assessment requires:
• Data that captures a “relatively long” timeframe
• Data that reflects “naturally occurring” phenomena
• Data that is “unambiguously” labeled.
Unfortunately, meeting such a threefold requirement is tough in the ML-NIDS context.

The MCFP data: a practical solution (for our community)

Takeaway. The MCFP is a suitable solution for assessments of ML-NIDS under 
concept drift. It is large, entails long timespans, ground truth is provided, and 
includes various types of benign (from hundreds of hosts) and malicious (entailing 
recent attacks) traffic in PCAP format – hence useful for “problem-space” attacks.

Perhaps surprisingly, we found only one work ([49]) on “concept drift” that considers MCFP 
(but it is unclear how the temporal aspect was taken into account).

We only manipulate malicious packets (i.e., those that can be detected by the ML-NIDS). For 
each PCAP trace we consider, we create four “adversarial” traces by proceeding as follows:
• Take all UDP packets and append a small padding of [1-100] (random) bytes
• Take all TCP packets with the PSH flag active, and apply the [1-100] bytes random padding
• Repeat the process again to mitigate bias due to randomness.
We also ensure each packet does not exceed the maximum packet length and recreate the 
checksum. We do these operations via scapy and we release our “packet manipulator” tool.

We consider ML-NIDS analysing NetFlows. Hence, the perturbations above will translate 
in the “feature space”. We generate the NetFlows by using Argus, and we then label them 
by following the official documentation provided by MCFP’s creators.

Moreover, in our “adversarial-evaluation” analyses, we will filter to only consider traffic 
generated from the attacker-controlled machine 

Workflow and ML-NIDS development

Summary. We get benign and malicious PCAP from MCFP and manipulate only the malicious traces—yielding problem-
space adversarial perturbations. Next, we take all PCAPs and extract (and label) the corresponding NetFlows. Finally, we 
train ML models (on both benign and malicious “past” data) and test their effectiveness on “future” data (benign, malicious, 
and adversarial) in a concept-drift setting. We repeat our experiments 50x to ensure statistically sound comparisons.

We do a “temporal split”: the data before a certain data is considered “past data” and is used to develop the ML 
models used in the ML-NIDS. The data after a certain date is considered “future data” and is used to test our 
hypotheses during our analysis. Our models are binary classifiers (benign/malicious), and we consider 48 different 
ML-NIDS, varying the classification algorithm (Random Forest of Histogram Gradient Boosting) and detector 
architecture (a single binary classifier, or an ensemble of classifiers---each devoted to a specific malware variant).
We also consider an attack-agnostic defense [7] proven to work against adversarial ML attacks in the feature space.

Case Studies. We consider two case studies, capturing different time periods:
• Short-term Case Study (SCS), of one week (Aug. 10→18, 2011).

• The cutoff date (past/future data) is set to Aug. 15th 2011
• Long-term Case Study (LCS), of four years (Feb. 2017→Jul 2021).

• The cutoff date (past/future data) is set to Jul. 1st 2017

For SCS, we consider three malware types (Neris, Rbot, Virut). 
For LCS, we consider five (Trickster, Trickbot, Artemis, Wannacry, Dridex).

Preliminary Analysis: are our ML-NIDS good and is there Concept Drift?

Answer: yes, our ML-NIDS are good; and yes, there is concept drift in both case studies!

Do adv. perturbations help against ML-NIDS affected by concept drift?

Answer: it depends. We derived three key observations:
• Our “blind” perturbations do cause a (mild, but statistically significant) performance 

degradation, but they have no effect on the Full-binary classifier on LCS (𝑝=0.4).
• The defense has a smaller benefit than reported in [7]. 
• In some isolated cases, our perturbations have little effect, and concept drift is 

enough to defeat the ML-NIDS.

Low-level analysis of “intriguing phenomena”

We consider results on Artemis because it consistently yielded near-zero 𝑡𝑝𝑟 by the Artemis-specific classifier.
• The Full-binary classifier is better against our adversarial perturbations on TCP packets: there are 18k misclassifications 

for non-adversarial NetFlows, and only 3.5k for adversarial NetFlows. 
• The situation is inverted for the ensemble classifier, with 35k evasions due to adversarial NetFlows against only 2k for 

non-adversarial ones (making our perturbations very effective!). 
Both of these claims are validated with a t-test (𝑝≪0.05). 

The UDP (malicious) NetFlows are always misclassified by the Artemis-specific classifier: interestingly, the ensemble 
(which relies also on this classifier) still retains at least 0.871 𝑡𝑝𝑟. This phenomenon is due to the 4 other malware-specific 
classifiers (i.e., Dridex, Trickster, Trickbot, Wannacry—all of which have never seen any NetFlow from Artemis during 
training!), of which at least one correctly predicted the ground truth of these NetFlows in the ensemble.

Lessons Learned. We derive three relevant implications for future endeavours. 
• The MCFP dataset and our custom resources can be used by future research for 

realistic concept-drift and/or problem-space assessments of adversarial 
perturbations in ML-NIDS contexts. 

• Overall, blind perturbations (when applied on raw network traffic and in the 
presence of concept drift) can decrease the 𝑡𝑝𝑟 of state-of-the-art ML-NIDS. 
However, some perturbations have no effect or can be detrimental to the 
attacker. We endorse future work to consider game-theory approaches.

• Statistical tests are pivotal to make sound claims. For instance, in some cases 
our perturbations lowered the 𝑡𝑝𝑟, but the impact was not statistically 
significant (i.e., 𝑝 > 0.05). Yet, we are not aware of any prior work on concept 
drift in the NIDS context whose claims were validated via statistical tests.
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